Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Math Biosci ; 371: 109181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537734

RESUMEN

We use a compartmental model with a time-varying transmission parameter to describe county level COVID-19 transmission in the greater St. Louis area of Missouri and investigate the challenges in fitting such a model to time-varying processes. We fit this model to synthetic and real confirmed case and hospital discharge data from May to December 2020 and calculate uncertainties in the resulting parameter estimates. We also explore non-identifiability within the estimated parameter set. We find that the death rate of infectious non-hospitalized individuals, the testing parameter and the initial number of exposed individuals are not identifiable based on an investigation of correlation coefficients between pairs of parameter estimates. We also explore how this non-identifiability ties back into uncertainties in the estimated parameters and find that it inflates uncertainty in the estimates of our time-varying transmission parameter. However, we do find that R0 is not highly affected by non-identifiability of its constituent components and the uncertainties associated with the quantity are smaller than those of the estimated parameters. Parameter values estimated from data will always be associated with some uncertainty and our work highlights the importance of conducting these analyses when fitting such models to real data. Exploring identifiability and uncertainty is crucial in revealing how much we can trust the parameter estimates.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/transmisión , COVID-19/epidemiología , Humanos , Missouri/epidemiología , Incertidumbre , Número Básico de Reproducción/estadística & datos numéricos , Modelos Epidemiológicos
2.
Front Public Health ; 12: 1329382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38528866

RESUMEN

Background: Limited information is available on geographic disparities of COVID-19 vaccination in Missouri and yet this information is essential for guiding efforts to improve vaccination coverage. Therefore, the objectives of this study were to (a) investigate geographic disparities in the proportion of the population vaccinated against COVID-19 in Missouri and (b) identify socioeconomic and demographic predictors of the identified disparities. Methods: The COVID-19 vaccination data for time period January 1 to December 31, 2021 were obtained from the Missouri Department of Health. County-level data on socioeconomic and demographic factors were downloaded from the 2020 American Community Survey. Proportions of county population vaccinated against COVID-19 were computed and displayed on choropleth maps. Global ordinary least square regression model and local geographically weighted regression model were used to identify predictors of proportions of COVID-19 vaccinated population. Results: Counties located in eastern Missouri tended to have high proportions of COVID-19 vaccinated population while low proportions were observed in the southernmost part of the state. Counties with low proportions of population vaccinated against COVID-19 tended to have high percentages of Hispanic/Latino population (p = 0.046), individuals living below the poverty level (p = 0.049), and uninsured (p = 0.015) populations. The strength of association between proportion of COVID-19 vaccinated population and percentage of Hispanic/Latino population varied by geographic location. Conclusion: The study findings confirm geographic disparities of proportions of COVID-19 vaccinated population in Missouri. Study findings are useful for guiding programs geared at improving vaccination coverage and uptake by targeting resources to areas with low proportions of vaccinated individuals.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Missouri/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Retrospectivos , Vacunación
3.
J Biol Dyn ; 17(1): 2287084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053251

RESUMEN

The region of St. Louis, Missouri, has displayed a high level of heterogeneity in COVID-19 cases, hospitalization, and vaccination coverage. We investigate how human mobility, vaccination, and time-varying transmission rates influenced SARS-CoV-2 transmission in five counties in the St. Louis area. A COVID-19 model with a system of ordinary differential equations was developed to illustrate the dynamics with a fully vaccinated class. Using the weekly number of vaccinations, cases, and hospitalization data from five counties in the greater St. Louis area in 2021, parameter estimation for the model was completed. The transmission coefficients for each county changed four times in that year to fit the model and the changing behaviour. We predicted the changes in disease spread under scenarios with increased vaccination coverage. SafeGraph local movement data were used to connect the forces of infection across various counties.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Modelos Biológicos , Vacunación , Hospitalización
4.
Parasit Vectors ; 16(1): 11, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635782

RESUMEN

BACKGROUND: West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. METHODS: We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. RESULTS: Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. CONCLUSIONS: Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases).


Asunto(s)
Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Fiebre del Nilo Occidental/epidemiología , Salud Pública , Clima , Brotes de Enfermedades , Predicción
5.
PLoS One ; 17(9): e0274899, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36170339

RESUMEN

BACKGROUND: Evidence seems to suggest that the risk of Coronavirus Disease 2019 (COVID-19) might vary across communities due to differences in population characteristics and movement patterns. However, little is known about these differences in the greater St Louis Area of Missouri and yet this information is useful for targeting control efforts. Therefore, the objectives of this study were to investigate (a) geographic disparities of COVID-19 risk and (b) associations between COVID-19 risk and socioeconomic, demographic, movement and chronic disease factors in the Greater St. Louis Area of Missouri, USA. METHODS: Data on COVID-19 incidence and chronic disease hospitalizations were obtained from the Department of Health and Missouri Hospital Association, respectively. Socioeconomic and demographic data were obtained from the 2018 American Community Survey while population mobility data were obtained from the SafeGraph website. Choropleth maps were used to identify geographic disparities of COVID-19 risk and several sociodemographic and chronic disease factors at the ZIP Code Tabulation Area (ZCTA) spatial scale. Global negative binomial and local geographically weighted negative binomial models were used to investigate associations between ZCTA-level COVID-19 risk and socioeconomic, demographic and chronic disease factors. RESULTS: There were geographic disparities found in COVID-19 risk. Risks tended to be higher in ZCTAs with high percentages of the population with a bachelor's degree (p<0.0001) and obesity hospitalizations (p<0.0001). Conversely, risks tended to be lower in ZCTAs with high percentages of the population working in agriculture (p<0.0001). However, the association between agricultural occupation and COVID-19 risk was modified by per capita between ZCTA visits. Areas that had both high per capita between ZCTA visits and high percentages of the population employed in agriculture had high COVID-19 risks. The strength of association between agricultural occupation and COVID-19 risk varied by geographic location. CONCLUSIONS: Geographic disparities of COVID-19 risk exist in the St. Louis area and are associated with sociodemographic factors, population movements, and obesity hospitalization risks. The latter is particularly concerning due to the growing prevalence of obesity and the known immunological impairments among obese individuals. Therefore, future studies need to focus on improving our understanding of the relationships between COVID-19 vaccination efficacy, obesity and waning of immunity among obese individuals so as to better guide vaccination regimens and reduce disparities.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Vacunas contra la COVID-19 , Humanos , Incidencia , Missouri/epidemiología , Obesidad , Factores Socioeconómicos , Estados Unidos
6.
BMC Public Health ; 22(1): 321, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168588

RESUMEN

BACKGROUND: There is evidence of geographic disparities in COVID-19 hospitalization risks that, if identified, could guide control efforts. Therefore, the objective of this study was to investigate Zip Code Tabulation Area (ZCTA)-level geographic disparities and identify predictors of COVID-19 hospitalization risks in the St. Louis area. METHODS: Hospitalization data for COVID-19 and several chronic diseases were obtained from the Missouri Hospital Association. ZCTA-level data on socioeconomic and demographic factors were obtained from the American Community Survey. Geographic disparities in distribution of COVID-19 age-adjusted hospitalization risks, socioeconomic and demographic factors as well as chronic disease risks were investigated using choropleth maps. Predictors of ZCTA-level COVID-19 hospitalization risks were investigated using global negative binomial and local geographically weighted negative binomial models. RESULTS: COVID-19 hospitalization risks were significantly higher in ZCTAs with high diabetes hospitalization risks (p < 0.0001), COVID-19 risks (p < 0.0001), black population (p = 0.0416), and populations with some college education (p = 0.0005). The associations between COVID-19 hospitalization risks and the first three predictors varied by geographic location. CONCLUSIONS: There is evidence of geographic disparities in COVID-19 hospitalization risks that are driven by differences in socioeconomic, demographic and health-related factors. The impacts of these factors vary by geographical location implying that a 'one-size-fits-all' approach may not be appropriate for management and control. Using both global and local models leads to a better understanding of geographic disparities. These findings are useful for informing health planning to identify geographic areas likely to have high numbers of individuals needing hospitalization as well as guiding vaccination efforts.


Asunto(s)
COVID-19 , Hospitalización , Humanos , Missouri/epidemiología , Modelos Estadísticos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...